

Open source Complex Logistics Simulation

OpenCLSim is a python package for rule driven scheduling of cyclic activities for in-depth comparison of alternative operating strategies

Welcome to OpenCLSim documentation! Please check the contents below for information on installation, getting started and actual example code. If you want to dive straight into the code you can check out our GitHub [https://github.com/TUDelft-CITG/OpenCLSim] page or the working examples presented in Jupyter Notebooks [https://github.com/TUDelft-CITG/OpenCLSim-Notebooks].

Contents:

	Installation

	Usage

	Examples

	OpenCLSim

	OpenCLSim API

	Contributing

	Credits

	History

	Version conventions

Indices and tables

	Index

	Module Index

	Search Page

Installation

Stable release

To install OpenCLSim, run this command in your terminal:

Use pip to install OpenCLSim
pip install openclsim

This is the preferred method to install OpenCLSim, as it will always install the most recent stable release.

If you do not pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for OpenCLSim can be downloaded from the Github repo [https://github.com/TUDelft-CITG/OpenCLSim].

You can either clone the public repository:

Use git to clone OpenCLSim
git clone git://github.com/TUDelft-CITG/OpenCLSim

Or download the tarball [https://github.com/TUDelft-CITG/OpenCLSim/tarball/master]:

Use curl to obtain the tarball
curl -OL https://github.com/TUDelft-CITG/OpenCLSim/tarball/master

Once you have a copy of the source, you can install it with:

Use python to install
python setup.py install

Usage

Import required components

To use OpenCLSim in a project you have to import the following three components:

Import openclsim for the logistical components
import openclsim.model as model
import openclsim.core as core

Import simpy for the simulation environment
import simpy

Using Mixins and Metaclasses

The Open Complex Logistics Simulation package is developed with the goal of reusable and generic components in mind. A new class can be instatiated by combining mixins from the openclsim.core, such as presented below. The following lines of code demonstrate how a containervessel can be defined:

Define the core components
A generic class for an object that can move and transport material
ContainerVessel = type('ContainerVessel',
 (core.Identifiable, # Give it a name and unique UUID
 core.Log, # Allow logging of all discrete events
 core.ContainerDependentMovable,# It can transport an amount
 core.HasResource, # Add information on serving equipment
),
 {})

The next step is to define all the required parameters for the defined metaclass
For more realistic simulation you might want to have speed dependent on the filling degree
v_full = 8 # meters per second
v_empty = 5 # meters per second

def variable_speed(v_empty, v_full):
 return lambda x: x * (v_full - v_empty) + v_empty

Other variables
data_vessel = {
 "env": simpy.Environment(), # The simpy environment
 "name": "Vessel 01", # Name
 "geometry": shapely.geometry.Point(0, 0), # The lat, lon coordinates
 "capacity": 5_000, # Capacity of the vessel
 "compute_v": variable_speed(v_empty, v_full), # Variable speed
 }

Create an object based on the metaclass and vessel data
vessel_01 = ContainerVessel(**data_vessel)

For more elaboration and examples please check the examples [https://openclsim.readthedocs.io/en/latest/examples] documentation. In-depth Jupyter Notebooks [https://github.com/TUDelft-CITG/OpenCLSim-Notebooks] can also be used.

Examples

This small example guide will cover the basic start-up and the three main elements of the OpenClSim package:

	Start-Up (Minimal set-up)

	Locations (Sites or stockpiles)

	Resources (Processors and transporters)

	Activities (Rule-based operations)

Once the elements above are explained some small simulations examples are presented.

Start-Up

The first part of every OpenClSim simulation is to import the required libraries and to initiate the simulation environment.

Required Libraries

Depending on the simulation it might be required to import additional libraries. The minimal set-up of an OpenCLSim project has the following import statements:

Import openclsim for the logistical components
import openclsim.model as model
import openclsim.core as core

Import simpy for the simulation environment
import simpy

Simulation Environment

OpenClSim continues on the SimPy discrete event simulation package. Some components are modified, such as the resources and container objects, but the simulation environment is pure SimPy. Starting the simulation environment can be done with the following line of code. For more information in SimPy environment please refer to the SimPy documentation [https://simpy.readthedocs.io/en/latest/].

Start the SimPy environment
env = simpy.Environment()

Locations

Basic processes do not require a location but more comprehensive simulations do. Locations are added to an OpenCLSim environment so that it becomes possible to track all events in both time and space. If a site is initiated with a container it can store materials as well. Adding a processor allows the location to load or unload as well.

Basic Location

The code below illustrates how a basic location can be created using OpenClSim. Such a location can be used to add information on events in space, such as tracking movement events or creating paths to follow.

Import the library required to add coordinates
import shapely.geometry

Create a location class
Location = type(
 "Location",
 (
 core.Identifiable, # Give it a name and unique UUID
 core.Log, # To keep track of all events
 core.HasResource, # Add information on the number of resources
 core.Locatable, # Add coordinates to extract distance information
),
 {},
)

location_data = {
 "env": env, # The SimPy environment
 "name": "Location 01", # Name of the location
 "geometry": shapely.geometry.Point(0, 0), # The lat, lon coordinates
}

location_01 = Location(**location_data)

Storage Location

The code below illustrates how a location can be created that is capable of storing an amount. Such a location can be used by the OpenClSim.model activities as origin or destination.

Import the library required to add coordinates
import shapely.geometry

Create a location class
StorageLocation = type(
 "StorageLocation",
 (
 core.Identifiable, # Give it a name and unique UUID
 core.Log, # To keep track of all events
 core.HasResource, # Add information on the number of resources
 core.Locatable, # Add coordinates to extract distance information
 core.HasContainer, # Add information on storage capacity
),
 {},
)

location_data = {
 "env": env, # The SimPy environment
 "name": "Location 02", # Name of the location
 "geometry": shapely.geometry.Point(0, 0), # The lat, lon coordinates
 "capacity": 10_000, # The maximum number of units
 "level": 10_000, # The number of units in the location
}

location_02 = StorageLocation(**location_data)

Processing Storage Location

The code below illustrates how a location can be created that is capable of storing an amount. Additional to the storage location, a processing- and storage location can be used as both the origin and loader or destination and unloader in a OpenClSim.model activity.

Import the library required to add coordinates
import shapely.geometry

Create a location class
ProcessingStorageLocation = type(
 "ProcessingStorageLocation",
 (
 core.Identifiable, # Give it a name and unique UUID
 core.Log, # To keep track of all events
 core.HasResource, # Add information on the number of resources
 core.Locatable, # Add coordinates to extract distance information
 core.HasContainer, # Add information on storage capacity
 core.Processor, # Add information on processing
),
 {},
)

Create a processing function
processing_rate = lambda x: x

location_data = {
 "env": env, # The SimPy environment
 "name": "Location 03", # Name of the location
 "geometry": shapely.geometry.Point(0, 1), # The lat, lon coordinates
 "capacity": 10_000, # The maximum number of units
 "level": 0, # The number of units in the location
 "loading_func": processing_rate, # Loading rate of 1 unit per 1 unit time
 "unloading_func": processing_rate, # Unloading rate of 1 unit per 1 unit time
}

location_03 = ProcessingStorageLocation(**location_data)

Optionally a OpenCLSim.core.Log mixin can be added to all locations to keep track of all the events that are taking place.

Resources

OpenCLSim resources can be used to process and transport units. The OpenCLSim.model activity class requires a loader, an unloader and a mover, this are examples of resources. A resource will always interact with another resource in an OpenClSim.model activity, but it is possible to initiate a simpy process to keep track of a single resource.

Processing Resource

An example of a processing resource is a harbour crane, it processes units from a storage location to a transporting resource or vice versa. In the OpenClSim.model activity such a processing resource could be selected as the loader or unloader. The example code is presented below.

Create a resource
ProcessingResource = type(
 "ProcessingResource",
 (
 core.Identifiable, # Give it a name and unique UUID
 core.Log, # To keep track of all events
 core.HasResource, # Add information on the number of resources
 core.Locatable, # Add coordinates to extract distance information
 core.Processor, # Add information on processing
),
 {},
)

The next step is to define all the required parameters for the defined metaclass
Create a processing function
processing_rate = lambda x: x

resource_data = {
 "env": env, # The SimPy environment
 "name": "Resource 01", # Name of the location
 "geometry": location_01.geometry, # The lat, lon coordinates
 "loading_func": processing_rate, # Loading rate of 1 unit per 1 unit time
 "unloading_func": processing_rate, # Unloading rate of 1 unit per 1 unit time
}

Create an object based on the metaclass and vessel data
resource_01 = ProcessingResource(**resource_data)

Transporting Resource

A harbour crane will service transporting resources. To continue with the harbour crane example, basically any vessel is a transporting resource because it is capable of moving units from location A to location B. In the OpenClSim.model activity such a processing resource could be selected as the mover.

Create a resource
TransportingResource = type(
 "TransportingResource",
 (
 core.Identifiable, # Give it a name and unique UUID
 core.Log, # To keep track of all events
 core.HasResource, # Add information on the number of resources
 core.ContainerDependentMovable, # It can transport an amount
),
 {},
)

The next step is to define all the required parameters for the defined metaclass
For more realistic simulation you might want to have speed dependent on the filling degree
v_full = 8 # meters per second
v_empty = 5 # meters per second

def variable_speed(v_empty, v_full):
 return lambda x: x * (v_full - v_empty) + v_empty

Other variables
resource_data = {
 "env": env, # The SimPy environment
 "name": "Resource 02", # Name of the location
 "geometry": location_01.geometry, # The lat, lon coordinates
 "capacity": 5_000, # Capacity of the vessel
 "compute_v": variable_speed(v_empty, v_full), # Variable speed
}

Create an object based on the metaclass and vessel data
resource_02 = TransportingResource(**resource_data)

Transporting Processing Resource

Finally, some resources are capable of both processing and moving units. Examples are dredging vessels or container vessels with deck cranes. These specific vessels have the unique property that they can act as the loader, unloader and mover in the OpenClSim.model activity.

Create a resource
TransportingProcessingResource = type(
 "TransportingProcessingResource",
 (
 core.Identifiable, # Give it a name and unique UUID
 core.Log, # To keep track of all events
 core.HasResource, # Add information on the number of resources
 core.ContainerDependentMovable, # It can transport an amount
 core.Processor, # Add information on processing
),
 {},
)

The next step is to define all the required parameters for the defined metaclass
For more realistic simulation you might want to have speed dependent on the filling degree
v_full = 8 # meters per second
v_empty = 5 # meters per second

def variable_speed(v_empty, v_full):
 return lambda x: x * (v_full - v_empty) + v_empty

Create a processing function
processing_rate = lambda x: x

Other variables
resource_data = {
 "env": env, # The SimPy environment
 "name": "Resource 03", # Name of the location
 "geometry": location_01.geometry, # The lat, lon coordinates
 "capacity": 5_000, # Capacity of the vessel
 "compute_v": variable_speed(v_empty, v_full), # Variable speed
 "loading_func": processing_rate, # Loading rate of 1 unit per 1 unit time
 "unloading_func": processing_rate, # Unloading rate of 1 unit per 1 unit time
}

Create an object based on the metaclass and vessel data
resource_03 = TransportingProcessingResource(**resource_data)

Simulations

The code below will start the simulation if SimPy processes are added to the environment. These SimPy processes can be added using a combination of SimPy and OpenCLSim, or by using OpenCLSim activities.

env.run()

SimPy processes

A SimPy process can be initiated using the code below. The code below will instruct Resource 02, which was a TransportingResource, to sail from Location 01 (at Lat, Long (0, 0)) to Location 02 (at Lat, Long (0, 1)). The simulation will stop as soon as Resource 02 is at Location 02.

Create the process function
def move_resource(mover, destination):

 # the is_at function is part of core.Movable
 while not mover.is_at(destination):

 # the move function is part of core.Movable
 yield from mover.move(destination)

Add to the SimPy environment
env.process(move_resource(resource_02, location_03))

Run the simulation
env.run()

Unconditional Activities

Activities are at the core of what OpenCLSim adds to SimPy, an activity is a collection of SimPy Processes. These activities schedule cyclic events, which could be production or logistical processes and, but the current OpenCLSim.model.activity assumes the following cycle:

	Loading

	Transporting

	Unloading

	Transporting

This cycle is repeated until a certain condition is met. Between the individual components of the cycle waiting events can occur due to arising queues, equipment failure or weather events. The minimal input for an activity is listed below.

	Origin

	Destination

	Loader

	Mover

	Unloader

If no additional input is provided, the cyclic process will be repeated until either the origin is empty or the destination is full. The example activity below will stop after two cycles because the origin will be empty and the destination will be full.

Define the activity
activity_01 = model.Activity(
 env=env, # The simpy environment defined in the first cel
 name="Activity 01", # Name of the activity
 origin=location_02, # Location 02 was filled with 10_000 units
 destination=location_03, # Location 03 was empty
 loader=resource_03, # Resource 03 could load
 mover=resource_03, # Resource 03 could move
 unloader=resource_03, # Resource 03 could unload
)

Run the simulation
env.run()

Conditional Activities

Additionally, start and stop events can be added to the activity. The process will only start as soon as a start event (or a list of start events) is completed and it will stop as soon as the stop event (or a list of stop events) are completed. These can be any SimPy event, such as a time-out, but OpenClSim provides some additional events as well, such as empty- or full events. The activity in the example below will start as soon as the previous activity is finished, but not sooner than 2 days after the simulation is started.

Activity starts after both
- Activity 01 is finished
- A minimum of 2 days after the simulation starts
start_event = [activity_01.main_process, env.timeout(2 * 24 * 3600)]

Define the activity
activity_02 = model.Activity(
 env=env, # The simpy environment defined in the first cel
 name="Activity 02", # Name of the activity
 origin=location_03, # Location 03 will be filled
 destination=location_02, # Location 02 will be empty
 loader=resource_03, # Resource 03 could load
 mover=resource_03, # Resource 03 could move
 unloader=resource_03, # Resource 03 could unload
 start_event=start_event, # Start Event
)

Run the simulation
env.run()

OpenCLSim

This page lists all functions and classes available in the OpenCLSim.model and OpenCLSim.core modules. For examples on how to use these submodules please check out the Examples page, information on installing OpenCLSim can be found on the Installation page.

Submodules

The main components are the Model module and the Core module. All of their components are listed below.

openclsim.model module

Directory for the simulation activities.

	
class openclsim.model.AbstractPluginClass

	Bases: abc.ABC

Abstract class used as the basis for all Classes implementing a plugin for a specific Activity.

Instance checks will be performed on this class level.

	
post_process(env, activity_log, activity, start_preprocessing, start_activity, *args, **kwargs)

	

	
pre_process(env, activity_log, activity, *args, **kwargs)

	

	
validate()

	

	
class openclsim.model.PluginActivity(*args, **kwargs)

	Bases: openclsim.core.identifiable.Identifiable, openclsim.core.log.Log

Base class for all activities which will provide a plugin mechanism.

The plugin mechanism foresees that the plugin function pre_process is called before the activity is executed, while
the function post_process is called after the activity has been executed.

	
delay_processing(env, activity_label, activity_log, waiting)

	

	
post_process(*args, **kwargs)

	

	
pre_process(args_data)

	

	
register_plugin(plugin, priority=0)

	

	
class openclsim.model.GenericActivity(registry, start_event=None, requested_resources={}, keep_resources=[], *args, **kwargs)

	Bases: openclsim.model.base_activities.PluginActivity

The GenericActivity Class forms a generic class which sets up all activites.

	
delayed_process(activity_log, env)

	Return a generator which can be added as a process to a simpy environment.

	
parse_expression(expr)

	

	
register_process()

	

	
class openclsim.model.MoveActivity(mover, destination, duration=None, show=False, engine_order=1, *args, **kwargs)

	Bases: openclsim.model.base_activities.GenericActivity

MoveActivity Class forms a specific class for a single move activity within a simulation.

It deals with a single origin container, destination container and a single combination of equipment
to move substances from the origin to the destination. It will initiate and suspend processes
according to a number of specified conditions. To run an activity after it has been initialized call env.run()
on the Simpy environment with which it was initialized.

To check when a transportation of substances can take place, the Activity class uses three different condition
arguments: start_condition, stop_condition and condition. These condition arguments should all be given a condition
object which has a satisfied method returning a boolean value. True if the condition is satisfied, False otherwise.

destination: object inheriting from HasContainer, HasResource, Locatable, Identifiable and Log
mover: moves to ‘origin’ if it is not already there, is loaded, then moves to ‘destination’ and is unloaded

should inherit from Movable, HasContainer, HasResource, Identifiable and Log
after the simulation is complete, its log will contain entries for each time it started moving,
stopped moving, started loading / unloading and stopped loading / unloading

	start_event: the activity will start as soon as this event is triggered

	by default will be to start immediately

	
main_process_function(activity_log, env)

	Return a generator which can be added as a process to a simpy.Environment.

In the process, a move will be made
by the mover, moving it to the destination.

activity_log: the core.Log object in which log_entries about the activities progress will be added.
env: the simpy.Environment in which the process will be run
mover: moves from its current position to the destination

should inherit from core.Movable

	destination: the location the mover will move to

	should inherit from core.Locatable

	engine_order: optional parameter specifying at what percentage of the maximum speed the mover should sail.

	for example, engine_order=0.5 corresponds to sailing at 50% of max speed

	
class openclsim.model.BasicActivity(duration, additional_logs=None, show=False, *args, **kwargs)

	Bases: openclsim.model.base_activities.GenericActivity

BasicActivity Class is a generic class to describe an activity, which does not require any specific resource, but has a specific duration.

duration: time required to perform the described activity.
additional_logs: list of other concepts, where the start and the stop of the basic activity should be recorded.
start_event: the activity will start as soon as this event is triggered

by default will be to start immediately

	
main_process_function(activity_log, env)

	Return a generator which can be added as a process to a simpy.Environment.

The process will report the start of the
activity, delay the execution for the provided duration, and finally report the completion of the activiy.

activity_log: the core.Log object in which log_entries about the activities progress will be added.
env: the simpy.Environment in which the process will be run
stop_event: a simpy.Event object, when this event occurs, the conditional process will finish executing its current

run of its sub_processes and then finish

	sub_processes: an Iterable of methods which will be called with the activity_log and env parameters and should

	return a generator which could be added as a process to a simpy.Environment
the sub_processes will be executed sequentially, in the order in which they are given as long
as the stop_event has not occurred.

	
class openclsim.model.SequentialActivity(sub_processes, show=False, *args, **kwargs)

	Bases: openclsim.model.base_activities.GenericActivity, openclsim.model.base_activities.RegisterSubProcesses

SequenceActivity Class forms a specific class.

This is for executing multiple activities in a dedicated order within a simulation.
It is a structural activity, which does not require specific resources.

	sub_processes:

	a list of activities to be executed in the provided sequence.

	start_event:

	The activity will start as soon as this event is triggered
by default will be to start immediately

	
main_process_function(activity_log, env)

	

	
class openclsim.model.WhileActivity(sub_processes, condition_event, show=False, *args, **kwargs)

	Bases: openclsim.model.base_activities.GenericActivity, openclsim.model.while_activity.ConditionProcessMixin, openclsim.model.base_activities.RegisterSubProcesses

WhileActivity Class forms a specific class for executing multiple activities in a dedicated order within a simulation.

The while activity is a structural activity, which does not require specific resources.

	sub_processes

	the sub_processes which is executed in sequence in every iteration

	condition_event

	a condition event provided in the expression language which will stop the iteration as soon as the event is fulfilled.

	start_event

	the activity will start as soon as this event is triggered
by default will be to start immediately

	
class openclsim.model.RepeatActivity(sub_processes, repetitions: int, show=False, *args, **kwargs)

	Bases: openclsim.model.base_activities.GenericActivity, openclsim.model.while_activity.ConditionProcessMixin, openclsim.model.base_activities.RegisterSubProcesses

RepeatActivity Class forms a specific class for executing multiple activities in a dedicated order within a simulation.

	sub_processes

	the sub_processes which is executed in sequence in every iteration

	repetitions

	Number of times the subprocess is repeated

	start_event

	the activity will start as soon as this event is triggered
by default will be to start immediately

	
openclsim.model.single_run_process(env, registry, name, origin, destination, mover, loader, unloader, start_event=None, stop_event=[], requested_resources={})

	Single run activity for the simulation.

	
class openclsim.model.ShiftAmountActivity(processor, origin, destination, duration=None, amount=None, id_='default', show=False, phase=None, *args, **kwargs)

	Bases: openclsim.model.base_activities.GenericActivity

ShiftAmountActivity Class forms a specific class for shifting material from an origin to a destination.

It deals with a single origin container, destination container and a single processor
to move substances from the origin to the destination. It will initiate and suspend processes
according to a number of specified conditions. To run an activity after it has been initialized call env.run()
on the Simpy environment with which it was initialized.

origin: container where the source objects are located.
destination: container, where the objects are assigned to
processor: resource responsible to implement the transfer.
amount: the maximum amount of objects to be transfered.
duration: time specified in seconds on how long it takes to transfer the objects.
id_: in case of MultiContainers the id_ of the container, where the objects should be removed from or assiged to respectively.
start_event: the activity will start as soon as this event is triggered

by default will be to start immediately

	
main_process_function(activity_log, env)

	Origin and Destination are of type HasContainer.

	
class openclsim.model.ParallelActivity(sub_processes, show=False, *args, **kwargs)

	Bases: openclsim.model.base_activities.GenericActivity, openclsim.model.base_activities.RegisterSubProcesses

ParallelActivity Class forms a specific class.

This is for executing multiple activities in a dedicated order within a simulation.
It is a structural activity, which does not require specific resources.

	sub_processes:

	a list of activities to be executed in Parallel.

	start_event:

	The activity will start as soon as this event is triggered
by default will be to start immediately

	
main_process_function(activity_log, env)

	

	
openclsim.model.register_processes(processes)

	Register all the processes iteratively.

	
openclsim.model.get_subprocesses(items)

	Get a list of all the activities an their subprocesses recursively.

openclsim.core module

Core of the simulation Package.

	
class openclsim.core.HasContainer(capacity: float, store_capacity: int = 1, level: float = 0.0, *args, **kwargs)

	Bases: openclsim.core.simpy_object.SimpyObject

A class which can hold information about objects of the same type.

	capacity

	amount the container can hold

	level

	Amount the container holds initially

	store_capacity

	The number of different types of information can be stored. In this class it usually is 1.

	
get_state()

	

	
class openclsim.core.HasMultiContainer(initials, store_capacity=10, *args, **kwargs)

	Bases: openclsim.core.container.HasContainer

A class which can represent information of objects of multiple types.

store_capacity: The number of different types of information can be stored. In this calss it is usually >1.
initials: a list of dictionaries describing the id_ of the container, the level of the individual container and the capacity of the individual container.

	
get_state()

	

	
class openclsim.core.EventsContainer(env, store_capacity: int = 1, *args, **kwargs)

	Bases: simpy.resources.store.FilterStore

EventsContainer provide a basic class for managing information which has to be stored in an object.

It is a generic container, which has a default behavior, but can be used for storing arbitrary objects.

	store_capacity

	Number of stores that can be contained by the multicontainer

	
container_list

	

	
empty_event

	Properties that are kept for backwards compatibility. mThey are NOT applicable for MultiContainers.

	
full_event

	Properties that are kept for backwards compatibility. mThey are NOT applicable for MultiContainers.

	
get(amount, id_='default')

	Request to get an item from the store matching the filter. The
request is triggered once there is such an item available in the store.

filter is a function receiving one item. It should return True for
items matching the filter criterion. The default function returns True
for all items, which makes the request to behave exactly like
StoreGet.

	
get_available(amount, id_='default')

	

	
get_callback(event, id_='default')

	

	
get_capacity(id_='default')

	

	
get_empty_event(start_event=False, id_='default')

	

	
get_full_event(start_event=False, id_='default')

	

	
get_level(id_='default')

	

	
initialize(init=0, capacity=0)

	Initialize method is a convenience method for backwards compatibility reasons.

	
initialize_container(initials)

	Initialize method used for MultiContainers.

	
put(amount, capacity=0, id_='default')

	Request to put item into the store. The request is triggered once
there is space for the item in the store.

	
put_available(amount, id_='default')

	

	
put_callback(event, id_='default')

	

	
class openclsim.core.Identifiable(name: str, ID: str = None, *args, **kwargs)

	Bases: object

OpenCLSim Identifiable with tags and a description.

	name

	a name

	IDUUID

	a unique id generated with uuid

	description

	Text that can be used to describe a simulation object.
Note that this field does not influence the simulation.

	tags

	List of tags that can be used to identify objects.
Note that this field does not influence the simulation.

	
class openclsim.core.Locatable(geometry, *args, **kwargs)

	Bases: object

Something with a geometry (geojson format).

	latdegrees

	can be a point as well as a polygon

lon : degrees

	
get_state()

	

	
is_at(locatable, tolerance=100)

	

	
class openclsim.core.Log(*args, **kwargs)

	Bases: openclsim.core.simpy_object.SimpyObject

Log class to log the object activities.

	
get_state()

	Add an empty instance of the get state function so that it is always available.

	
log_entry(t, activity_id, activity_state=<LogState.UNKNOWN: -1>, additional_state=None, activity_label={})

	

	
class openclsim.core.LogState

	Bases: enum.Enum

LogState enumeration of all possible states of a Log object.

Access the name using .name and the integer value using .value

	
START = 1

	

	
STOP = 2

	

	
UNKNOWN = -1

	

	
WAIT_START = 3

	

	
WAIT_STOP = 4

	

	
class openclsim.core.Movable(v: float = 1, *args, **kwargs)

	Bases: openclsim.core.simpy_object.SimpyObject, openclsim.core.locatable.Locatable

Movable class.

Used for object that can move with a fixed speed
geometry: point used to track its current location

	v

	speed

	
current_speed

	

	
move(destination, engine_order=1.0, duration=None)

	Determine distance between origin and destination.

Yield the time it takes to travel based on flow properties and load factor of the flow.

	
sailing_duration(origin, destination, engine_order, verbose=True)

	Determine the sailing duration.

	
class openclsim.core.ContainerDependentMovable(compute_v, *args, **kwargs)

	Bases: openclsim.core.movable.Movable, openclsim.core.container.HasContainer

ContainerDependentMovable class.

Used for objects that move with a speed dependent on the container level
compute_v: a function, given the fraction the container is filled (in [0,1]), returns the current speed

	v_empty

	Velocity of the vessel when empty

	v_full

	Velocity of the vessel when full

	
current_speed

	

	
class openclsim.core.MultiContainerDependentMovable(compute_v, *args, **kwargs)

	Bases: openclsim.core.movable.Movable, openclsim.core.container.HasMultiContainer

MultiContainerDependentMovable class.

Used for objects that move with a speed dependent on the container level.
This movable is provided with a MultiContainer, thus can handle container containing different object.
compute_v: a function, given the fraction the container is filled (in [0,1]), returns the current speed

	
current_speed

	

	
class openclsim.core.Processor(*args, **kwargs)

	Bases: openclsim.core.simpy_object.SimpyObject

Processor class.

Adds the loading and unloading components and checks for possible downtime.

If the processor class is used to allow “loading” or “unloading” the mixins “LoadingFunction” and “UnloadingFunction” should be added as well.
If no functions are used a subcycle should be used, which is possible with the mixins “LoadingSubcycle” and “UnloadingSubcycle”.

	
check_possible_shift(origin, destination, amount, activity, id_='default')

	Check if all the material is available.

If the amount is not available in the origin or in the destination
yield a put or get. Time will move forward until the amount can be
retrieved from the origin or placed into the destination.

	
determine_processor_amount(origin, destination, amount=None, id_='default')

	Determine the maximum amount that can be carried.

	
process(origin, destination, shiftamount_fcn, id_='default')

	Move content from ship to the site or from the site to the ship.

This to ensure that the ship’s container reaches the desired level.
Yields the time it takes to process.

	
class openclsim.core.LoadingFunction(loading_rate: float, load_manoeuvring: float = 0, *args, **kwargs)

	Bases: object

Create a loading function and add it a processor.

This is a generic and easy to read function, you can create your own LoadingFunction class and add this as a mixin.

	loading_rateamount / second

	The rate at which units are loaded per second

	load_manoeuvringseconds

	The time it takes to manoeuvring in minutes

	
loading(origin, destination, amount, id_='default')

	Determine the duration based on an amount that is given as input with processing.

The origin an destination are also part of the input, because other functions might be dependent on the location.

	
class openclsim.core.UnloadingFunction(unloading_rate: float, unload_manoeuvring: float = 0, *args, **kwargs)

	Bases: object

Create an unloading function and add it a processor.

This is a generic and easy to read function, you can create your own LoadingFunction class and add this as a mixin.

	unloading_ratevolume / second

	the rate at which units are loaded per second

	unload_manoeuvringminutes

	the time it takes to manoeuvring in minutes

	
unloading(origin, destination, amount, id_='default')

	Determine the duration based on an amount that is given as input with processing.

The origin an destination are also part of the input, because other functions might be dependent on the location.

	
class openclsim.core.HasResource(nr_resources: int = 1, *args, **kwargs)

	Bases: openclsim.core.simpy_object.SimpyObject

HasProcessingLimit class.

Adds a limited Simpy resource which should be requested before the object is used for processing.

	nr_resources

	Number of rescources of the object

	
class openclsim.core.SimpyObject(env, *args, **kwargs)

	Bases: object

General object which can be extended by any class requiring a simpy environment.

	env

	A simpy Environment

openclsim.server module

Module contents

Top-level package for OpenCLSim.

OpenCLSim API

A flask server is part of the OpenCLSim package. This allows using the python code from OpenCLSim from a separate front-end.

Starting the Flask Server

The example code below lets you start the Flask server from the windows command line, for other operation systems please check the Flask Documentation [https://flask.pocoo.org/docs/dev/cli/].

Set Flask app
set FLASK_APP=openclsim/server.py

Set Flask environment
set FLASK_ENV=development

Run Flask
flask run

Using the Flask Server

You can send json strings to the Flask Server using the methods presented in the server module [https://openclsim.readthedocs.io/en/latest/openclsim.html#module-openclsim.server/].

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/TUDelft-CITG/OpenCLSim/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

OpenCLSim could always use more documentation, whether as part of the
official OpenCLSim docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/TUDelft-CITG/OpenCLSim/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up OpenCLSim for local development.

	Fork the OpenCLSim repository on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/OpenCLSim.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv openclsim
$ cd openclsim/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 openclsim tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	The style of OpenCLSim is according to Black. Format your code using
Black witht the following lines of code:

$ black openclsim
$ black tests

You can install black using pip.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.4, 3.5 and 3.6, and for PyPy. Check
CircleCI and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_openclsim

To make the documentation pages:

$ make docs # for linux/osx

For windows:

$ del docs\openclsim.rst
$ del docs\modules.rst
$ sphinx-apidoc -o docs/ openclsim
$ cd docs
$ make html
$ start explorer _build\html\index.html

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Mark van Koningsveld [https://www.tudelft.nl/citg/over-faculteit/afdelingen/hydraulic-engineering/sections/rivers-ports-waterways-and-dredging-engineering/staff/prof-dr-ir-m-mark-van-koningsveld/]

	Joris den Uijl [https://github.com/uijl]

	Fedor Baart [https://github.com/SiggyF]

	Anne Hommelberg [https://github.com/AnneHommelberg]

Contributors

Various MSc projects

	Joris den Uijl, [http://resolver.tudelft.nl/uuid:8d82b44c-59e3-4307-a0af-03a20f1a931e] 2018. Integrating engineering knowledge in logistical optimisation: development of a concept evaluation tool. MSc thesis. Delft University of Technology, Civil Engineering and Geosciences, Hydraulic Engineering. Delft, the Netherlands.

	Vibeke van der Bilt [http://resolver.tudelft.nl/uuid:ab6d12ea-34fe-4577-b72c-6aa688e0d1bf], 2019. Assessing emission performance of dredging projects. MSc thesis. Delft University of Technology, Civil Engineering and Geosciences, Hydraulic Engineering - Ports and Waterways. Delft, the Netherlands.

	Pieter van Halem [http://resolver.tudelft.nl/uuid:5d34d333-34fe-4181-95b6-d8d82f72d979], 2019. Route optimization in dynamic currents. Navigation system for the North Sea and Wadden Sea. MSc thesis. Delft University of Technology, Civil Engineering and Geosciences, Environmental Fluid Mechanics. Delft, the Netherlands.

	Servaas Kievits [http://resolver.tudelft.nl/uuid:b457c9c3-922e-4016-9580-f79a2549128d], 2019. A framework for the impact assessment of low discharges on the performance of inland waterway transport. MSc thesis. Delft University of Technology, Civil Engineering and Geosciences, Hydraulic Engineering - Ports and Waterways. Delft, the Netherlands.

Ongoing PhD work

	Frederik Vinke [https://repository.tudelft.nl], 2019. Climate proofing the inland water transport system in the Netherlands. PhD thesis. Delft University of Technology, Civil Engineering and Geosciences, Hydraulic Engineering - Ports and Waterways. Delft, the Netherlands.

History

1.4.2 (2021-02-02)

New notebooks.

1.2.3 (2020-05-07)

Improved documentation and readme.

1.2.2 (2020-04-10)

Fixed a bug raised in GitHub issue #89.

1.2.1 (2020-03-27)

Minor bug fixes.

1.2.0 (2020-01-27)

	Major updates to the Movable class

	You can now enter multiple origins and destinations in one activity

	Optimisation of the schedule is possible by enhanding the Movable

1.1.1 (2019-12-11)

	Minor bug fixes

1.1.0 (2019-08-30)

	More generic Movable class

	More generic Routeable class

	Easier to implement own functions and adjustments

1.0.1 (2019-07-26)

	Small bug fixes

1.0.0 (2019-07-10)

	First formal release

0.3.0 (2019-06-20)

	First release to PyPI and rename to OpenCLSim

v0.2.0 (2019-02-14)

	Second tag on GitHub

v0.1.0 (2018-08-01)

	First tag on GitHub

Version conventions

This package is being developed continuously. Branch protection is turned on for the master branch. Useful new features and bugfixes can be developed in a separate branch or fork. Pull requests can be made to integrate updates into the master branch. To keep track of versions, every change to the master branch will receive a version tag. This page outlines the version tags’ naming convention.

Each change to the master branch is stamped with a unique version identifier. We use sequence based version identifiers, that consist of a sequence of three numbers: the first number is a major change identifier, followed by a minor change idenfier and finally a maintenance identifier. This leads to version identifiers of the form:

major.minor.maintenance (example: 1.2.2)

The following guideline gives an idea what types of changes are considered major changes, minor changes and maintenance:

	Major changes (typically breaking changes) -> major + 1

	Minor changes (typically adding of new features) -> minor + 1

	Maintenance (typically bug fixes and updates in documentation -> maintenance + 1

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 openclsim	

 	
 	
 openclsim.core	

 	
 	
 openclsim.model	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | U
 | V
 | W

A

 	
 	AbstractPluginClass (class in openclsim.model)

B

 	
 	BasicActivity (class in openclsim.model)

C

 	
 	check_possible_shift() (openclsim.core.Processor method)

 	container_list (openclsim.core.EventsContainer attribute)

 	ContainerDependentMovable (class in openclsim.core)

 	
 	current_speed (openclsim.core.ContainerDependentMovable attribute)

 	(openclsim.core.Movable attribute)

 	(openclsim.core.MultiContainerDependentMovable attribute)

D

 	
 	delay_processing() (openclsim.model.PluginActivity method)

 	
 	delayed_process() (openclsim.model.GenericActivity method)

 	determine_processor_amount() (openclsim.core.Processor method)

E

 	
 	empty_event (openclsim.core.EventsContainer attribute)

 	
 	EventsContainer (class in openclsim.core)

F

 	
 	full_event (openclsim.core.EventsContainer attribute)

G

 	
 	GenericActivity (class in openclsim.model)

 	get() (openclsim.core.EventsContainer method)

 	get_available() (openclsim.core.EventsContainer method)

 	get_callback() (openclsim.core.EventsContainer method)

 	get_capacity() (openclsim.core.EventsContainer method)

 	get_empty_event() (openclsim.core.EventsContainer method)

 	
 	get_full_event() (openclsim.core.EventsContainer method)

 	get_level() (openclsim.core.EventsContainer method)

 	get_state() (openclsim.core.HasContainer method)

 	(openclsim.core.HasMultiContainer method)

 	(openclsim.core.Locatable method)

 	(openclsim.core.Log method)

 	get_subprocesses() (in module openclsim.model)

H

 	
 	HasContainer (class in openclsim.core)

 	
 	HasMultiContainer (class in openclsim.core)

 	HasResource (class in openclsim.core)

I

 	
 	Identifiable (class in openclsim.core)

 	initialize() (openclsim.core.EventsContainer method)

 	
 	initialize_container() (openclsim.core.EventsContainer method)

 	is_at() (openclsim.core.Locatable method)

L

 	
 	loading() (openclsim.core.LoadingFunction method)

 	LoadingFunction (class in openclsim.core)

 	Locatable (class in openclsim.core)

 	
 	Log (class in openclsim.core)

 	log_entry() (openclsim.core.Log method)

 	LogState (class in openclsim.core)

M

 	
 	main_process_function() (openclsim.model.BasicActivity method)

 	(openclsim.model.MoveActivity method)

 	(openclsim.model.ParallelActivity method)

 	(openclsim.model.SequentialActivity method)

 	(openclsim.model.ShiftAmountActivity method)

 	
 	Movable (class in openclsim.core)

 	move() (openclsim.core.Movable method)

 	MoveActivity (class in openclsim.model)

 	MultiContainerDependentMovable (class in openclsim.core)

O

 	
 	openclsim (module)

 	
 	openclsim.core (module)

 	openclsim.model (module)

P

 	
 	ParallelActivity (class in openclsim.model)

 	parse_expression() (openclsim.model.GenericActivity method)

 	PluginActivity (class in openclsim.model)

 	post_process() (openclsim.model.AbstractPluginClass method)

 	(openclsim.model.PluginActivity method)

 	pre_process() (openclsim.model.AbstractPluginClass method)

 	(openclsim.model.PluginActivity method)

 	
 	process() (openclsim.core.Processor method)

 	Processor (class in openclsim.core)

 	put() (openclsim.core.EventsContainer method)

 	put_available() (openclsim.core.EventsContainer method)

 	put_callback() (openclsim.core.EventsContainer method)

R

 	
 	register_plugin() (openclsim.model.PluginActivity method)

 	register_process() (openclsim.model.GenericActivity method)

 	
 	register_processes() (in module openclsim.model)

 	RepeatActivity (class in openclsim.model)

S

 	
 	sailing_duration() (openclsim.core.Movable method)

 	SequentialActivity (class in openclsim.model)

 	ShiftAmountActivity (class in openclsim.model)

 	
 	SimpyObject (class in openclsim.core)

 	single_run_process() (in module openclsim.model)

 	START (openclsim.core.LogState attribute)

 	STOP (openclsim.core.LogState attribute)

U

 	
 	UNKNOWN (openclsim.core.LogState attribute)

 	
 	unloading() (openclsim.core.UnloadingFunction method)

 	UnloadingFunction (class in openclsim.core)

V

 	
 	validate() (openclsim.model.AbstractPluginClass method)

W

 	
 	WAIT_START (openclsim.core.LogState attribute)

 	
 	WAIT_STOP (openclsim.core.LogState attribute)

 	WhileActivity (class in openclsim.model)

OpenCLSim

Submodules

	OpenCLSim
	Submodules

	openclsim.model module

	openclsim.core module

	openclsim.server module

	Module contents

 All modules for which code is available

	openclsim.core.container

	openclsim.core.events_container

	openclsim.core.identifiable

	openclsim.core.locatable

	openclsim.core.log

	openclsim.core.movable

	openclsim.core.processor

	openclsim.core.resource

	openclsim.core.simpy_object

	openclsim.model.base_activities

	openclsim.model.basic_activity

	openclsim.model.helpers

	openclsim.model.move_activity

	openclsim.model.parallel_activity

	openclsim.model.sequential_activity

	openclsim.model.shift_amount_activity

	openclsim.model.single_run_process

	openclsim.model.while_activity

 Source code for openclsim.core.container

"""Component that assigns a container to the simulation objecs."""
from .events_container import EventsContainer
from .simpy_object import SimpyObject

[docs]class HasContainer(SimpyObject):
 """
 A class which can hold information about objects of the same type.

 Parameters

 capacity
 amount the container can hold
 level
 Amount the container holds initially
 store_capacity
 The number of different types of information can be stored. In this class it usually is 1.
 """

 def __init__(
 self,
 capacity: float,
 store_capacity: int = 1,
 level: float = 0.0,
 *args,
 **kwargs,
):
 super().__init__(*args, **kwargs)
 """Initialization"""
 container_class = EventsContainer
 self.container = container_class(self.env, store_capacity=store_capacity)
 if capacity > 0:
 self.container.initialize(capacity=capacity, init=level)

[docs] def get_state(self):
 state = {}
 if hasattr(super(), "get_state"):
 state = super().get_state()

 state.update({"container level": self.container.get_level()})
 return state

[docs]class HasMultiContainer(HasContainer):
 """
 A class which can represent information of objects of multiple types.

 store_capacity: The number of different types of information can be stored. In this calss it is usually >1.
 initials: a list of dictionaries describing the id_ of the container, the level of the individual container and the capacity of the individual container.
 """

 def __init__(self, initials, store_capacity=10, *args, **kwargs):
 super().__init__(capacity=0, store_capacity=store_capacity, *args, **kwargs)
 self.container.initialize_container(initials)

[docs] def get_state(self):
 state = {}
 if hasattr(super(), "get_state"):
 state = super().get_state()

 state.update(
 {
 "container level": {
 container: self.container.get_level(id_=container)
 for container in self.container.container_list
 }
 }
)

 return state

 Source code for openclsim.core.events_container

"""EventsContainer provide a basic class for managing information which has to be stored in an object."""
import simpy

[docs]class EventsContainer(simpy.FilterStore):
 """
 EventsContainer provide a basic class for managing information which has to be stored in an object.

 It is a generic container, which has a default behavior, but can be used for storing arbitrary objects.

 Parameters

 store_capacity
 Number of stores that can be contained by the multicontainer
 """

 def __init__(self, env, store_capacity: int = 1, *args, **kwargs):
 super().__init__(env, capacity=store_capacity)
 self._env = env
 self._get_available_events = {}
 self._put_available_events = {}

[docs] def initialize(self, init=0, capacity=0):
 """Initialize method is a convenience method for backwards compatibility reasons."""
 self.put(init, capacity)

[docs] def initialize_container(self, initials):
 """Initialize method used for MultiContainers."""
 for item in initials:
 assert "id" in item
 assert "capacity" in item
 assert "level" in item
 super().put(item)

[docs] def get_available(self, amount, id_="default"):
 if self.get_level(id_) >= amount:
 return self._env.event().succeed()
 if id_ in self._get_available_events:
 if amount in self._get_available_events[id_]:
 return self._get_available_events[id_][amount]
 # else case: id_ is not in self._get_available_events
 new_event = self._env.event()
 self._get_available_events[id_] = {}
 self._get_available_events[id_][amount] = new_event
 return new_event

[docs] def get_capacity(self, id_="default"):
 if self.items is None:
 return 0
 res = [item["capacity"] for item in self.items if item["id"] == id_]
 if isinstance(res, list) and len(res) > 0:
 return res[0]
 return 0

[docs] def get_level(self, id_="default"):
 if self.items is None:
 return 0
 res = [item["level"] for item in self.items if item["id"] == id_]
 if isinstance(res, list) and len(res) > 0:
 return res[0]
 return 0

[docs] def put_available(self, amount, id_="default"):
 if self.get_capacity(id_) - self.get_level(id_) >= amount:
 return self._env.event().succeed()
 if id_ in self._put_available_events:
 if amount in self._put_available_events:
 return self._put_available_events[amount]
 new_event = self._env.event()
 self._put_available_events[id_] = {}
 self._put_available_events[id_][amount] = new_event
 return new_event

[docs] def get_empty_event(self, start_event=False, id_="default"):
 if not start_event:
 return self.put_available(self.get_capacity(id_), id_)
 elif start_event.processed:
 return self.put_available(self.get_capacity(id_), id_)
 else:
 return self._env.event()

[docs] def get_full_event(self, start_event=False, id_="default"):
 if not start_event:
 return self.get_available(self.get_capacity(id_), id_)
 elif start_event.processed:
 return self.get_available(self.get_capacity(id_), id_)
 else:
 return self._env.event()

 @property
 def empty_event(self):
 """Properties that are kept for backwards compatibility. mThey are NOT applicable for MultiContainers."""
 return self.put_available(self.get_capacity())

 @property
 def full_event(self):
 """Properties that are kept for backwards compatibility. mThey are NOT applicable for MultiContainers."""
 return self.get_available(self.get_capacity())

[docs] def put(self, amount, capacity=0, id_="default"):
 current_amount = 0
 if len(self.items) > 0:
 status = super().get(lambda status: status["id"] == id_)
 # if status.ok:
 if status.triggered:
 status = status.value
 if "capacity" in status:
 capacity = status["capacity"]
 if "level" in status:
 current_amount = status["level"]
 else:
 raise Exception(
 f"Failed to derive the previous version of container {id_}"
)
 # this is a fall back in case the container is used with default
 put_event = super().put(
 {"id": id_, "level": current_amount + amount, "capacity": capacity}
)
 put_event.callbacks.append(self.put_callback)
 return put_event

[docs] def put_callback(self, event, id_="default"):
 if isinstance(event, simpy.resources.store.StorePut):
 if "id" in event.item:
 id_ = event.item["id"]
 if id_ in self._get_available_events:
 for amount in sorted(self._get_available_events[id_]):
 if self.get_level(id_) >= amount:
 if id_ in self._get_available_events:
 self._get_available_events[id_][amount].succeed()
 del self._get_available_events[id_][amount]
 else:
 return

[docs] def get(self, amount, id_="default"):
 store_status = super().get(lambda state: state["id"] == id_).value
 store_status["level"] = store_status["level"] - amount
 get_event = super().put(store_status)
 get_event.callbacks.append(self.get_callback)
 return get_event

[docs] def get_callback(self, event, id_="default"):
 # it is confusing that this is checking for storeput while doing a get
 # the reason is that subtracting from a container requires to get the complete
 # content of a container and then add the remaining content of the container
 # which creates a storeput
 if isinstance(event, simpy.resources.store.StorePut):
 if "id" in event.item:
 id_ = event.item["id"]
 if id_ in self._put_available_events:
 for amount in sorted(self._put_available_events[id_]):
 # if isinstance(self, ReservationContainer):
 # if self.get_capacity(id_) - self.get_expected_level(id_) >= amount:
 # self._put_available_events[amount].succeed()
 # del self._put_available_events[amount]
 # el
 if self.get_capacity(id_) - self.get_level(id_) >= amount:
 if id_ in self._put_available_events:
 self._put_available_events[id_][amount].succeed()
 del self._put_available_events[id_][amount]
 else:
 return

 @property
 def container_list(self):
 container_ids = []
 if len(self.items) > 0:
 container_ids = [item["id"] for item in self.items]
 return container_ids

 Source code for openclsim.core.identifiable

"""Component to identify the simulation objecs."""

import uuid

[docs]class Identifiable:
 """
 OpenCLSim Identifiable with tags and a description.

 Parameters

 name
 a name
 ID : UUID
 a unique id generated with uuid
 description
 Text that can be used to describe a simulation object.
 Note that this field does not influence the simulation.
 tags
 List of tags that can be used to identify objects.
 Note that this field does not influence the simulation.
 """

 def __init__(self, name: str, ID: str = None, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.name = name
 self.id = ID if ID else str(uuid.uuid4())

 Source code for openclsim.core.locatable

"""Component to locate the simulation objecs."""
import pyproj
import shapely.geometry

[docs]class Locatable:
 """
 Something with a geometry (geojson format).

 Parameters

 lat : degrees
 can be a point as well as a polygon
 lon : degrees
 """

 def __init__(self, geometry, *args, **kwargs):
 super().__init__(*args, **kwargs)
 """Initialization"""
 self.geometry = geometry
 self.wgs84 = pyproj.Geod(ellps="WGS84")

[docs] def is_at(self, locatable, tolerance=100):
 current_location = shapely.geometry.asShape(self.geometry)
 other_location = shapely.geometry.asShape(locatable.geometry)
 _, _, distance = self.wgs84.inv(
 current_location.x, current_location.y, other_location.x, other_location.y
)

 return distance < tolerance

[docs] def get_state(self):
 state = {}
 if hasattr(super(), "get_state"):
 state = super().get_state()

 state.update({"geometry": self.geometry})
 return state

 Source code for openclsim.core.log

"""Component to log the simulation objecs."""
import datetime
from enum import Enum

from .simpy_object import SimpyObject

[docs]class LogState(Enum):
 """
 LogState enumeration of all possible states of a Log object.

 Access the name using .name and the integer value using .value
 """

 START = 1
 STOP = 2
 WAIT_START = 3
 WAIT_STOP = 4
 UNKNOWN = -1

[docs]class Log(SimpyObject):
 """Log class to log the object activities."""

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 """Initialization"""
 self.log = {
 "Timestamp": [],
 "ActivityID": [],
 "ActivityState": [],
 "ObjectState": [],
 "ActivityLabel": [],
 }

[docs] def log_entry(
 self,
 t,
 activity_id,
 activity_state=LogState.UNKNOWN,
 additional_state=None,
 activity_label={},
):
 object_state = self.get_state()
 if additional_state:
 object_state.update(additional_state)

 if activity_label != {}:
 assert activity_label.get("type") is not None
 assert activity_label.get("ref") is not None

 self.log["Timestamp"].append(datetime.datetime.utcfromtimestamp(t))
 self.log["ActivityID"].append(activity_id)
 self.log["ActivityState"].append(activity_state.name)
 self.log["ObjectState"].append(object_state)
 self.log["ActivityLabel"].append(activity_label)

[docs] def get_state(self):
 """Add an empty instance of the get state function so that it is always available."""
 state = {}
 if hasattr(super(), "get_state"):
 state = super().get_state()
 return state

 Source code for openclsim.core.movable

"""Component to move the simulation objecs."""
import logging

import shapely.geometry

from .container import HasContainer, HasMultiContainer
from .locatable import Locatable
from .log import LogState
from .simpy_object import SimpyObject

logger = logging.getLogger(__name__)

[docs]class Movable(SimpyObject, Locatable):
 """
 Movable class.

 Used for object that can move with a fixed speed
 geometry: point used to track its current location

 Parameters

 v
 speed
 """

 def __init__(self, v: float = 1, *args, **kwargs):
 super().__init__(*args, **kwargs)
 """Initialization"""
 self.v = v

[docs] def move(self, destination, engine_order=1.0, duration=None):
 """
 Determine distance between origin and destination.

 Yield the time it takes to travel based on flow properties and load factor of the flow.
 """
 # Log the start event
 self.log_entry(
 self.env.now,
 self.activity_id,
 LogState.START,
)

 # Determine the sailing_duration
 if duration is not None:
 sailing_duration = duration
 else:
 sailing_duration = self.sailing_duration(
 self.geometry, destination, engine_order
)

 # Check out the time based on duration of sailing event
 yield self.env.timeout(sailing_duration)

 # Set mover geometry to destination geometry
 self.geometry = shapely.geometry.asShape(destination.geometry)

 # Log the stop event
 self.log_entry(
 self.env.now,
 self.activity_id,
 LogState.STOP,
)

 @property
 def current_speed(self):
 return self.v

[docs] def sailing_duration(self, origin, destination, engine_order, verbose=True):
 """Determine the sailing duration."""
 orig = shapely.geometry.asShape(self.geometry)
 dest = shapely.geometry.asShape(destination.geometry)
 _, _, distance = self.wgs84.inv(orig.x, orig.y, dest.x, dest.y)

 return distance / (self.current_speed * engine_order)

[docs]class ContainerDependentMovable(Movable, HasContainer):
 """
 ContainerDependentMovable class.

 Used for objects that move with a speed dependent on the container level
 compute_v: a function, given the fraction the container is filled (in [0,1]), returns the current speed

 Parameters

 v_empty
 Velocity of the vessel when empty
 v_full
 Velocity of the vessel when full
 """

 def __init__(self, compute_v, *args, **kwargs):
 """Init of the containerdependent moveable."""
 super().__init__(*args, **kwargs)
 self.compute_v = compute_v

 @property
 def current_speed(self):
 return self.compute_v(
 self.container.get_level() / self.container.get_capacity()
)

[docs]class MultiContainerDependentMovable(Movable, HasMultiContainer):
 """
 MultiContainerDependentMovable class.

 Used for objects that move with a speed dependent on the container level.
 This movable is provided with a MultiContainer, thus can handle container containing different object.
 compute_v: a function, given the fraction the container is filled (in [0,1]), returns the current speed
 """

 def __init__(self, compute_v, *args, **kwargs):
 super().__init__(*args, **kwargs)
 """Initialization"""
 self.compute_v = compute_v
 self.conainter_ids = self.container.container_list

 @property
 def current_speed(self):
 sum_level = 0
 sum_capacity = 0
 for id_ in self.container.container_list:
 sum_level = self.container.get_level(id_)
 sum_capacity = self.container.get_capacity(id_)
 fill_degree = sum_level / sum_capacity
 return self.compute_v(fill_degree)

 Source code for openclsim.core.processor

"""Component to process with the simulation objecs."""
import logging

from .container import HasContainer
from .log import Log, LogState
from .resource import HasResource
from .simpy_object import SimpyObject

logger = logging.getLogger(__name__)

[docs]class Processor(SimpyObject):
 """
 Processor class.

 Adds the loading and unloading components and checks for possible downtime.

 If the processor class is used to allow "loading" or "unloading" the mixins "LoadingFunction" and "UnloadingFunction" should be added as well.
 If no functions are used a subcycle should be used, which is possible with the mixins "LoadingSubcycle" and "UnloadingSubcycle".
 """

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 """Initialization"""

[docs] def process(
 self,
 origin,
 destination,
 shiftamount_fcn,
 id_="default",
):
 """
 Move content from ship to the site or from the site to the ship.

 This to ensure that the ship's container reaches the desired level.
 Yields the time it takes to process.
 """

 assert isinstance(origin, HasContainer) or isinstance(origin, HasContainer)
 assert isinstance(destination, HasContainer) or isinstance(
 destination, HasContainer
)
 assert isinstance(origin, HasResource)
 assert isinstance(destination, HasResource)
 assert isinstance(self, Log)
 assert isinstance(origin, Log)
 assert isinstance(destination, Log)
 assert self.is_at(origin)
 assert destination.is_at(origin)

 # Log the process for all parts
 for location in set([self, origin, destination]):
 location.log_entry(
 t=location.env.now,
 activity_id=self.activity_id,
 activity_state=LogState.START,
)

 duration, amount = shiftamount_fcn(origin, destination)

 # Get the amount from the origin
 yield from self.check_possible_shift(origin, destination, amount, "get", id_)
 yield self.env.timeout(duration)
 # Put the amount in the destination
 yield from self.check_possible_shift(origin, destination, amount, "put", id_)

 # Log the process for all parts
 for location in set([self, origin, destination]):
 location.log_entry(
 t=location.env.now,
 activity_id=self.activity_id,
 activity_state=LogState.STOP,
)

[docs] def check_possible_shift(
 self, origin, destination, amount, activity, id_="default"
):
 """
 Check if all the material is available.

 If the amount is not available in the origin or in the destination
 yield a put or get. Time will move forward until the amount can be
 retrieved from the origin or placed into the destination.
 """

 if activity == "get":

 # Shift amounts in containers
 start_time = self.env.now
 yield origin.container.get(amount, id_)
 end_time = self.env.now

 # If the amount is not available in the origin, log waiting
 if start_time != end_time:
 self.log_entry(
 t=start_time,
 activity_id=self.activity_id,
 activity_state=LogState.WAIT_START,
 activity_label={
 "type": "subprocess",
 "ref": "waiting origin content",
 },
)
 self.log_entry(
 t=end_time,
 activity_id=self.activity_id,
 activity_state=LogState.WAIT_STOP,
 activity_label={
 "type": "subprocess",
 "ref": "waiting origin content",
 },
)

 elif activity == "put":

 # Shift amounts in containers
 start_time = self.env.now
 yield destination.container.put(amount, id_=id_)
 end_time = self.env.now

 # If the amount is cannot be put in the destination, log waiting
 if start_time != end_time:
 self.log_entry(
 t=start_time,
 activity_id=self.activity_id,
 activity_state=LogState.WAIT_START,
 activity_label={
 "type": "subprocess",
 "ref": "waiting destination content",
 },
)
 self.log_entry(
 t=end_time,
 activity_id=self.activity_id,
 activity_state=LogState.WAIT_STOP,
 activity_label={
 "type": "subprocess",
 "ref": "waiting destination content",
 },
)

[docs] def determine_processor_amount(
 self,
 origin,
 destination,
 amount=None,
 id_="default",
):
 """Determine the maximum amount that can be carried."""
 dest_cont = destination.container
 destination_max_amount = dest_cont.get_capacity(id_) - dest_cont.get_level(id_)
 if destination_max_amount <= 0:
 raise ValueError(
 f"Attempting to shift content to a full destination (name: {destination.name}, container_id: {id_}, capacity: {dest_cont.get_capacity(id_)} level: {dest_cont.get_level(id_)})."
)

 org_cont = origin.container
 origin_max_amount = org_cont.get_level(id_)
 if origin_max_amount <= 0:
 raise ValueError(
 f"Attempting to shift content from an empty origin (name: {origin.name}, container_id: {id_}, capacity: {org_cont.get_capacity(id_)} level: {org_cont.get_level(id_)})."
)

 new_amount = min(origin_max_amount, destination_max_amount)
 if amount is not None:
 new_amount = min(amount, new_amount)

 return new_amount

[docs]class LoadingFunction:
 """
 Create a loading function and add it a processor.

 This is a generic and easy to read function, you can create your own LoadingFunction class and add this as a mixin.

 Parameters

 loading_rate : amount / second
 The rate at which units are loaded per second
 load_manoeuvring : seconds
 The time it takes to manoeuvring in minutes
 """

 def __init__(
 self, loading_rate: float, load_manoeuvring: float = 0, *args, **kwargs
):
 super().__init__(*args, **kwargs)
 """Initialization"""
 self.loading_rate = loading_rate
 self.load_manoeuvring = load_manoeuvring

[docs] def loading(self, origin, destination, amount, id_="default"):
 """
 Determine the duration based on an amount that is given as input with processing.

 The origin an destination are also part of the input, because other functions might be dependent on the location.
 """
 if not hasattr(self.loading_rate, "__call__"):
 duration = amount / self.loading_rate + self.load_manoeuvring * 60
 return duration, amount
 else:
 loading_time = self.loading_rate(
 destination.container.get_level(id_),
 destination.container.get_level(id_) + amount,
)
 duration = loading_time + self.load_manoeuvring * 60
 return duration, amount

[docs]class UnloadingFunction:
 """
 Create an unloading function and add it a processor.

 This is a generic and easy to read function, you can create your own LoadingFunction class and add this as a mixin.

 Parameters

 unloading_rate : volume / second
 the rate at which units are loaded per second
 unload_manoeuvring : minutes
 the time it takes to manoeuvring in minutes
 """

 def __init__(
 self, unloading_rate: float, unload_manoeuvring: float = 0, *args, **kwargs
):
 super().__init__(*args, **kwargs)
 """Initialization"""
 self.unloading_rate = unloading_rate
 self.unload_manoeuvring = unload_manoeuvring

[docs] def unloading(self, origin, destination, amount, id_="default"):
 """
 Determine the duration based on an amount that is given as input with processing.

 The origin an destination are also part of the input, because other functions might be dependent on the location.
 """

 if not hasattr(self.unloading_rate, "__call__"):
 duration = amount / self.unloading_rate + self.unload_manoeuvring * 60
 return duration, amount
 else:
 unloading_time = self.unloading_rate(
 origin.container.get_level(id_) + amount,
 origin.container.get_level(id_),
)
 duration = unloading_time + self.unload_manoeuvring * 60
 return duration, amount

 Source code for openclsim.core.resource

"""Component to add rescources to the simulation objecs."""

import simpy

from .simpy_object import SimpyObject

[docs]class HasResource(SimpyObject):
 """
 HasProcessingLimit class.

 Adds a limited Simpy resource which should be requested before the object is used for processing.

 Parameters

 nr_resources
 Number of rescources of the object
 """

 def __init__(self, nr_resources: int = 1, *args, **kwargs):
 super().__init__(*args, **kwargs)
 """Initialization"""
 self.resource = simpy.Resource(self.env, capacity=nr_resources)

 Source code for openclsim.core.simpy_object

"""General object which can be extended by any class requiring a simpy environment."""

[docs]class SimpyObject:
 """
 General object which can be extended by any class requiring a simpy environment.

 Parameters

 env
 A simpy Environment
 """

 def __init__(self, env, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.env = env

 Source code for openclsim.model.base_activities

"""Base classes for the openclsim activities."""

from abc import ABC

import simpy

import openclsim.core as core

[docs]class AbstractPluginClass(ABC):
 """
 Abstract class used as the basis for all Classes implementing a plugin for a specific Activity.

 Instance checks will be performed on this class level.
 """

 def __init__(self):
 pass

[docs] def pre_process(self, env, activity_log, activity, *args, **kwargs):
 return {}

[docs] def post_process(
 self,
 env,
 activity_log,
 activity,
 start_preprocessing,
 start_activity,
 *args,
 **kwargs,
):
 return {}

[docs] def validate(self):
 pass

class RegisterSubProcesses:
 """Mixin for the activities that want to execute their sub_processes in sequence."""

 def register_sequential_subprocesses(self):
 self.start_sequence = self.env.event()

 for (i, sub_process) in enumerate(self.sub_processes):
 if i == 0:
 sub_process.start_event_parent = self.start_sequence

 else:
 sub_process.start_event_parent = {
 "type": "activity",
 "state": "done",
 "name": self.sub_processes[i - 1].name,
 }

 for sub_process in self.sub_processes:
 if hasattr(sub_process, "register_subprocesses"):
 sub_process.register_subprocesses()

 def register_parallel_subprocesses(self):
 self.start_parallel = self.env.event()

 for (i, sub_process) in enumerate(self.sub_processes):
 sub_process.start_event_parent = self.start_parallel

 if hasattr(sub_process, "register_subprocesses"):
 sub_process.register_subprocesses()

[docs]class PluginActivity(core.Identifiable, core.Log):
 """
 Base class for all activities which will provide a plugin mechanism.

 The plugin mechanism foresees that the plugin function pre_process is called before the activity is executed, while
 the function post_process is called after the activity has been executed.
 """

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.plugins = list()

[docs] def register_plugin(self, plugin, priority=0):
 self.plugins.append({"priority": priority, "plugin": plugin})
 self.plugins = sorted(self.plugins, key=lambda x: x["priority"])

[docs] def pre_process(self, args_data):
 # iterating over all registered plugins for this activity calling pre_process
 for item in self.plugins:
 yield from item["plugin"].pre_process(**args_data)

[docs] def post_process(self, *args, **kwargs):
 # iterating over all registered plugins for this activity calling post_process
 for item in self.plugins:
 yield from item["plugin"].post_process(*args, **kwargs)

[docs] def delay_processing(self, env, activity_label, activity_log, waiting):
 activity_log.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.WAIT_START,
 activity_label=activity_label,
)
 yield env.timeout(waiting)
 activity_log.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.WAIT_STOP,
 activity_label=activity_label,
)

[docs]class GenericActivity(PluginActivity):
 """The GenericActivity Class forms a generic class which sets up all activites."""

 def __init__(
 self,
 registry,
 start_event=None,
 requested_resources=dict(),
 keep_resources=list(),
 *args,
 **kwargs,
):
 super().__init__(*args, **kwargs)
 """Initialization"""
 self.registry = registry
 self.start_event = start_event
 self.requested_resources = requested_resources
 self.keep_resources = keep_resources
 self.done_event = self.env.event()

[docs] def register_process(self):
 # replace the events
 self.done_event = self.env.event()
 if hasattr(self, "start_sequence") and self.start_sequence.triggered:
 self.start_sequence = self.env.event()
 if hasattr(self, "start_parallel") and self.start_parallel.triggered:
 self.start_parallel = self.env.event()

 # add the activity withs start event to the simpy environment
 self.main_process = self.env.process(
 self.delayed_process(activity_log=self, env=self.env)
)

 # add activity to the registry
 self.registry.setdefault("name", {}).setdefault(self.name, set()).add(self)
 self.registry.setdefault("id", {}).setdefault(self.id, set()).add(self)

[docs] def parse_expression(self, expr):
 if isinstance(expr, simpy.Event):
 return expr
 if isinstance(expr, list):
 return self.env.all_of([self.parse_expression(item) for item in expr])
 if isinstance(expr, dict):
 if "and" in expr:
 return self.env.all_of(
 [self.parse_expression(item) for item in expr["and"]]
)
 if "or" in expr:
 return self.env.any_of(
 [self.parse_expression(item) for item in expr["or"]]
)
 if expr.get("type") == "container":
 id_ = expr.get("id_", "default")
 obj = expr["concept"]
 if expr["state"] == "full":
 return obj.container.get_full_event(id_=id_)
 elif expr["state"] == "empty":
 return obj.container.get_empty_event(id_=id_)
 raise ValueError

 if expr.get("type") == "activity":
 if expr.get("state") != "done":
 raise ValueError(
 f"Unknown state {expr.get('state')} in ActivityExpression."
)
 key = expr.get("ID", expr.get("name"))
 activity_ = self.registry.get("id", {}).get(
 key, self.registry.get("name", {}).get(key)
)

 if activity_ is None:
 raise Exception(
 f"No activity found in ActivityExpression for id/name {key}"
)
 return self.env.all_of(
 [activity_item.main_process for activity_item in activity_]
)

 raise ValueError

 raise ValueError(
 f"{type(expr)} is not a valid input type. Valid input types are: simpy.Event, dict, and list"
)

[docs] def delayed_process(
 self,
 activity_log,
 env,
):
 """Return a generator which can be added as a process to a simpy environment."""
 additional_logs = getattr(self, "additional_logs", [])
 start_event = (
 None
 if self.start_event is None
 else self.parse_expression(self.start_event)
)

 if hasattr(self, "start_event_parent"):
 yield self.parse_expression(self.start_event_parent)

 start_time = env.now
 if start_event is not None:
 yield start_event

 if env.now > start_time:
 # log start
 activity_log.log_entry(
 t=start_time,
 activity_id=activity_log.id,
 activity_state=core.LogState.WAIT_START,
)
 for log in additional_logs:
 log.log_entry(
 t=start_time,
 activity_id=activity_log.id,
 activity_state=core.LogState.WAIT_START,
 activity_label={
 "type": "additional log",
 "ref": self.id,
 },
)

 # log stop
 activity_log.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.WAIT_STOP,
)
 for log in additional_logs:
 log.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.WAIT_STOP,
 activity_label={
 "type": "additional log",
 "ref": self.id,
 },
)

 yield from self.main_process_function(activity_log=self, env=self.env)

 def _request_resource(self, requested_resources, resource):
 """Request the given resource and yields it."""
 if resource not in requested_resources:
 requested_resources[resource] = resource.request()
 yield requested_resources[resource]

 def _release_resource(self, requested_resources, resource, kept_resource=None):
 """
 Release the given resource, provided it does not equal the kept_resource parameter.

 Deletes the released resource from the requested_resources dictionary.
 """
 if kept_resource is not None:
 if isinstance(kept_resource, list):
 if resource in [item.resource for item in kept_resource]:
 return
 elif resource == kept_resource.resource or resource == kept_resource:
 return

 if resource in requested_resources.keys():
 resource.release(requested_resources[resource])
 del requested_resources[resource]

 Source code for openclsim.model.basic_activity

"""Base classes for the openclsim activities."""

import openclsim.core as core

from .base_activities import GenericActivity

[docs]class BasicActivity(GenericActivity):
 """
 BasicActivity Class is a generic class to describe an activity, which does not require any specific resource, but has a specific duration.

 duration: time required to perform the described activity.
 additional_logs: list of other concepts, where the start and the stop of the basic activity should be recorded.
 start_event: the activity will start as soon as this event is triggered
 by default will be to start immediately
 """

 def __init__(self, duration, additional_logs=None, show=False, *args, **kwargs):
 super().__init__(*args, **kwargs)
 """Initialization"""

 self.print = show
 self.duration = duration
 if additional_logs is None:
 additional_logs = []
 self.additional_logs = additional_logs

[docs] def main_process_function(self, activity_log, env):
 """
 Return a generator which can be added as a process to a simpy.Environment.

 The process will report the start of the
 activity, delay the execution for the provided duration, and finally report the completion of the activiy.

 activity_log: the core.Log object in which log_entries about the activities progress will be added.
 env: the simpy.Environment in which the process will be run
 stop_event: a simpy.Event object, when this event occurs, the conditional process will finish executing its current
 run of its sub_processes and then finish
 sub_processes: an Iterable of methods which will be called with the activity_log and env parameters and should
 return a generator which could be added as a process to a simpy.Environment
 the sub_processes will be executed sequentially, in the order in which they are given as long
 as the stop_event has not occurred.
 """

 start_time = env.now
 args_data = {
 "env": env,
 "activity_log": activity_log,
 "activity": self,
 }
 yield from self.pre_process(args_data)

 start_basic = env.now

 activity_log.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.START,
)

 if isinstance(self.additional_logs, list) and len(self.additional_logs) > 0:
 for log_item in self.additional_logs:
 log_item.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.START,
 activity_label={
 "type": "additional log",
 "ref": self.id,
 },
)

 yield env.timeout(self.duration)

 activity_log.log_entry(
 t=env.now, activity_id=activity_log.id, activity_state=core.LogState.STOP
)
 if isinstance(self.additional_logs, list) and len(self.additional_logs) > 0:
 for log_item in self.additional_logs:
 log_item.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.STOP,
 activity_label={
 "type": "additional log",
 "ref": self.id,
 },
)

 args_data["start_preprocessing"] = start_time
 args_data["start_activity"] = start_basic
 yield from self.post_process(**args_data)

 Source code for openclsim.model.helpers

"""Module with helper functions for the simulation."""
import logging

logger = logging.getLogger(__name__)

[docs]def get_subprocesses(items):
 """Get a list of all the activities an their subprocesses recursively."""
 if not isinstance(items, list):
 items = [items]
 else:
 # This creates a new list with the same items.
 items = [i for i in items]

 for item in items:
 items.extend(getattr(item, "sub_processes", []))
 return items

[docs]def register_processes(processes):
 """Register all the processes iteratively."""
 items = list(set(get_subprocesses(processes)))

 for item in items:
 item.main_process = None

 registerd_items = []
 for _ in range(100):
 unregistered_items = set(items) - set(registerd_items)
 if len(unregistered_items) == 0:
 break
 for item in unregistered_items:
 try:
 item.register_process()
 registerd_items.append(item)
 except Exception as e:
 logger.info(e)
 else:
 raise ValueError(
 "Due to recursion in the events of the activities, not all the activities can be registered."
)

 Source code for openclsim.model.move_activity

"""Move activity for the simulation."""

import openclsim.core as core

from .base_activities import GenericActivity

[docs]class MoveActivity(GenericActivity):
 """
 MoveActivity Class forms a specific class for a single move activity within a simulation.

 It deals with a single origin container, destination container and a single combination of equipment
 to move substances from the origin to the destination. It will initiate and suspend processes
 according to a number of specified conditions. To run an activity after it has been initialized call env.run()
 on the Simpy environment with which it was initialized.

 To check when a transportation of substances can take place, the Activity class uses three different condition
 arguments: start_condition, stop_condition and condition. These condition arguments should all be given a condition
 object which has a satisfied method returning a boolean value. True if the condition is satisfied, False otherwise.

 destination: object inheriting from HasContainer, HasResource, Locatable, Identifiable and Log
 mover: moves to 'origin' if it is not already there, is loaded, then moves to 'destination' and is unloaded
 should inherit from Movable, HasContainer, HasResource, Identifiable and Log
 after the simulation is complete, its log will contain entries for each time it started moving,
 stopped moving, started loading / unloading and stopped loading / unloading
 start_event: the activity will start as soon as this event is triggered
 by default will be to start immediately
 """

 def __init__(
 self,
 mover,
 destination,
 duration=None,
 show=False,
 engine_order=1,
 *args,
 **kwargs
):
 super().__init__(*args, **kwargs)
 """Initialization"""
 self.destination = destination
 self.mover = mover
 self.duration = duration
 self.print = show
 self.engine_order = engine_order

[docs] def main_process_function(self, activity_log, env):
 """
 Return a generator which can be added as a process to a simpy.Environment.

 In the process, a move will be made
 by the mover, moving it to the destination.

 activity_log: the core.Log object in which log_entries about the activities progress will be added.
 env: the simpy.Environment in which the process will be run
 mover: moves from its current position to the destination
 should inherit from core.Movable
 destination: the location the mover will move to
 should inherit from core.Locatable
 engine_order: optional parameter specifying at what percentage of the maximum speed the mover should sail.
 for example, engine_order=0.5 corresponds to sailing at 50% of max speed
 """
 yield from self._request_resource(self.requested_resources, self.mover.resource)

 start_time = env.now
 args_data = {
 "env": env,
 "activity_log": activity_log,
 "activity": self,
 }
 yield from self.pre_process(args_data)

 activity_log.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.START,
)

 start_mover = env.now
 self.mover.activity_id = activity_log.id
 yield from self.mover.move(
 destination=self.destination,
 engine_order=self.engine_order,
 duration=self.duration,
)

 activity_log.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.STOP,
)

 args_data["start_preprocessing"] = start_time
 args_data["start_activity"] = start_mover
 yield from self.post_process(**args_data)

 self._release_resource(
 self.requested_resources, self.mover.resource, self.keep_resources
)

 Source code for openclsim.model.parallel_activity

"""Parallel activity for the simulation."""
import openclsim.core as core

from .base_activities import GenericActivity, RegisterSubProcesses

[docs]class ParallelActivity(GenericActivity, RegisterSubProcesses):
 """
 ParallelActivity Class forms a specific class.

 This is for executing multiple activities in a dedicated order within a simulation.
 It is a structural activity, which does not require specific resources.

 sub_processes:
 a list of activities to be executed in Parallel.
 start_event:
 The activity will start as soon as this event is triggered
 by default will be to start immediately
 """

 def __init__(self, sub_processes, show=False, *args, **kwargs):
 super().__init__(*args, **kwargs)
 """Initialization"""

 self.print = show
 self.sub_processes = sub_processes
 self.register_subprocesses = self.register_parallel_subprocesses
 self.register_subprocesses()

[docs] def main_process_function(self, activity_log, env):
 start_time = env.now
 args_data = {
 "env": env,
 "activity_log": activity_log,
 "activity": self,
 }
 yield from self.pre_process(args_data)

 start_time_parallel = env.now

 activity_log.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.START,
)

 self.start_parallel.succeed()

 stop_events = []
 subprocess_ids = []
 for sub_process in self.sub_processes:
 activity_log.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.START,
 activity_label={"type": "subprocess", "ref": sub_process.id},
)

 stop_events.append(
 {"type": "activity", "state": "done", "name": sub_process.name}
)
 subprocess_ids.append(sub_process.id)

 # wait until all stop events are triggered
 while len(stop_events) > 0:
 # wait until any stop event is triggered
 event_trigger = self.parse_expression(
 [{"or": [event for event in stop_events]}]
)
 yield event_trigger
 # add a log line for each triggered stop event and pop it
 i = 0
 while i < len(stop_events):
 if self.parse_expression(stop_events[i]).triggered is True:
 stop_events.pop(i)
 activity_log.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.STOP,
 activity_label={
 "type": "subprocess",
 "ref": subprocess_ids.pop(i),
 },
)
 else:
 i += 1

 activity_log.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.STOP,
)

 args_data["start_preprocessing"] = start_time
 args_data["start_activity"] = start_time_parallel
 yield from self.post_process(**args_data)

 Source code for openclsim.model.sequential_activity

"""Sequential activity for the simulation."""
import openclsim.core as core

from .base_activities import GenericActivity, RegisterSubProcesses

[docs]class SequentialActivity(GenericActivity, RegisterSubProcesses):
 """
 SequenceActivity Class forms a specific class.

 This is for executing multiple activities in a dedicated order within a simulation.
 It is a structural activity, which does not require specific resources.

 sub_processes:
 a list of activities to be executed in the provided sequence.
 start_event:
 The activity will start as soon as this event is triggered
 by default will be to start immediately
 """

 def __init__(self, sub_processes, show=False, *args, **kwargs):
 super().__init__(*args, **kwargs)
 """Initialization"""

 self.print = show
 self.sub_processes = sub_processes
 self.register_subprocesses = self.register_sequential_subprocesses
 self.register_subprocesses()

[docs] def main_process_function(self, activity_log, env):
 start_time = env.now
 args_data = {
 "env": env,
 "activity_log": activity_log,
 "activity": self,
 }
 yield from self.pre_process(args_data)

 start_sequence = env.now

 activity_log.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.START,
)

 self.start_sequence.succeed()

 for sub_process in self.sub_processes:
 activity_log.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.START,
 activity_label={
 "type": "subprocess",
 "ref": sub_process.id,
 },
)

 stop_event = self.parse_expression(
 [
 {
 "type": "activity",
 "state": "done",
 "name": sub_process.name,
 }
]
)
 yield stop_event

 activity_log.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.STOP,
 activity_label={
 "type": "subprocess",
 "ref": sub_process.id,
 },
)

 activity_log.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.STOP,
)

 args_data["start_preprocessing"] = start_time
 args_data["start_activity"] = start_sequence
 yield from self.post_process(**args_data)

 Source code for openclsim.model.shift_amount_activity

"""Shift amount activity for the simulation."""

from functools import partial

import openclsim.core as core

from .base_activities import GenericActivity

[docs]class ShiftAmountActivity(GenericActivity):
 """
 ShiftAmountActivity Class forms a specific class for shifting material from an origin to a destination.

 It deals with a single origin container, destination container and a single processor
 to move substances from the origin to the destination. It will initiate and suspend processes
 according to a number of specified conditions. To run an activity after it has been initialized call env.run()
 on the Simpy environment with which it was initialized.

 origin: container where the source objects are located.
 destination: container, where the objects are assigned to
 processor: resource responsible to implement the transfer.
 amount: the maximum amount of objects to be transfered.
 duration: time specified in seconds on how long it takes to transfer the objects.
 id_: in case of MultiContainers the id_ of the container, where the objects should be removed from or assiged to respectively.
 start_event: the activity will start as soon as this event is triggered
 by default will be to start immediately
 """

 def __init__(
 self,
 processor,
 origin,
 destination,
 duration=None,
 amount=None,
 id_="default",
 show=False,
 phase=None,
 *args,
 **kwargs,
):
 super().__init__(*args, **kwargs)
 """Initialization"""
 self.origin = origin
 self.destination = destination

 self.processor = processor
 self.amount = amount
 self.duration = duration
 self.id_ = id_
 self.print = show
 self.phase = phase

 def _request_resource_if_available(
 self,
 env,
 amount,
 activity_id,
):
 all_available = False
 while not all_available and amount > 0:
 # yield until enough content and space available in origin and destination
 yield env.all_of(
 events=[self.origin.container.get_available(amount, self.id_)]
)

 yield from self._request_resource(
 self.requested_resources, self.processor.resource
)
 if self.origin.container.get_level(self.id_) < amount:
 # someone removed / added content while we were requesting the processor, so abort and wait for available
 # space/content again
 self._release_resource(
 self.requested_resources,
 self.processor.resource,
)
 continue

 yield from self._request_resource(
 self.requested_resources, self.origin.resource
)
 if self.origin.container.get_level(self.id_) < amount:
 self._release_resource(
 self.requested_resources,
 self.processor.resource,
)
 self._release_resource(
 self.requested_resources,
 self.origin.resource,
)
 continue
 all_available = True

[docs] def main_process_function(self, activity_log, env):
 """Origin and Destination are of type HasContainer."""
 assert self.processor.is_at(self.origin)
 assert self.destination.is_at(self.origin)

 amount = self.processor.determine_processor_amount(
 self.origin, self.destination, self.amount, self.id_
)

 yield from self._request_resource(
 self.requested_resources, self.destination.resource
)

 yield from self._request_resource_if_available(
 env=env,
 amount=amount,
 activity_id=activity_log.id,
)

 start_time = env.now
 args_data = {
 "env": env,
 "activity_log": activity_log,
 "activity": self,
 }
 yield from self.pre_process(args_data)

 activity_log.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.START,
)

 start_shift = env.now
 yield from self._shift_amount(
 env,
 amount,
 activity_id=activity_log.id,
)

 activity_log.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.STOP,
)
 args_data["start_preprocessing"] = start_time
 args_data["start_activity"] = start_shift
 yield from self.post_process(**args_data)

 # release the unloader, self.destination and mover requests
 self._release_resource(
 self.requested_resources, self.destination.resource, self.keep_resources
)
 if self.origin.resource in self.requested_resources:
 self._release_resource(
 self.requested_resources, self.origin.resource, self.keep_resources
)
 if self.processor.resource in self.requested_resources:
 self._release_resource(
 self.requested_resources, self.processor.resource, self.keep_resources
)

 def _shift_amount(
 self,
 env,
 amount,
 activity_id,
):
 self.processor.activity_id = activity_id
 self.origin.activity_id = activity_id

 shiftamount_fcn = self._get_shiftamount_fcn(amount)

 yield from self.processor.process(
 origin=self.origin,
 destination=self.destination,
 id_=self.id_,
 shiftamount_fcn=shiftamount_fcn,
)

 def _get_shiftamount_fcn(self, amount):
 if self.duration is not None:
 return lambda origin, destination: (self.duration, amount)
 elif self.phase == "loading":
 return partial(self.processor.loading, amount=amount)
 elif self.phase == "unloading":
 return partial(self.processor.unloading, amount=amount)
 else:
 raise RuntimeError(
 "Both the phase (loading / unloading) and the duration of the shiftamount activity are undefined. At least one is required!"
)

 Source code for openclsim.model.single_run_process

"""Single run activity for the simulation."""

from .move_activity import MoveActivity
from .shift_amount_activity import ShiftAmountActivity
from .while_activity import WhileActivity

[docs]def single_run_process(
 env,
 registry,
 name,
 origin,
 destination,
 mover,
 loader,
 unloader,
 start_event=None,
 stop_event=[],
 requested_resources={},
):
 """Single run activity for the simulation."""
 if stop_event == []:
 stop_event = [
 {
 "or": [
 {"type": "container", "concept": origin, "state": "empty"},
 {"type": "container", "concept": destination, "state": "full"},
]
 }
]

 single_run = [
 MoveActivity(
 env=env,
 registry=registry,
 requested_resources=requested_resources,
 name=f"{name} sailing empty",
 mover=mover,
 destination=origin,
),
 ShiftAmountActivity(
 env=env,
 registry=registry,
 requested_resources=requested_resources,
 phase="loading",
 name=f"{name} loading",
 processor=loader,
 origin=origin,
 destination=mover,
),
 MoveActivity(
 env=env,
 registry=registry,
 requested_resources=requested_resources,
 name=f"{name} sailing filled",
 mover=mover,
 destination=destination,
),
 ShiftAmountActivity(
 env=env,
 registry=registry,
 requested_resources=requested_resources,
 phase="unloading",
 name=f"{name} unloading",
 processor=unloader,
 origin=mover,
 destination=destination,
),
]

 while_activity = WhileActivity(
 env=env,
 name=name,
 registry=registry,
 sub_processes=single_run,
 condition_event=stop_event,
 start_event=start_event,
)

 return single_run, while_activity

 Source code for openclsim.model.while_activity

"""While activity for the simulation."""

import openclsim.core as core

from .base_activities import GenericActivity, RegisterSubProcesses
from .helpers import register_processes

class ConditionProcessMixin:
 """Mixin for the condition process."""

 def main_process_function(self, activity_log, env):
 condition_event = self.parse_expression(self.condition_event)

 start_time = env.now
 args_data = {
 "env": env,
 "activity_log": activity_log,
 "activity": self,
 }
 yield from self.pre_process(args_data)

 start_while = env.now

 activity_log.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.START,
)

 repetitions = 1
 while True:
 self.start_sequence.succeed()
 for sub_process in self.sub_processes:
 activity_log.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.START,
 activity_label={
 "type": "subprocess",
 "ref": sub_process.id,
 },
)

 stop_event = self.parse_expression(
 [
 {
 "type": "activity",
 "state": "done",
 "name": sub_process.name,
 }
]
)
 yield stop_event

 activity_log.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.STOP,
 activity_label={
 "type": "subprocess",
 "ref": sub_process.id,
 },
)

 if repetitions >= self.max_iterations or condition_event.processed is True:
 break
 else:
 repetitions += 1

 # Reset the sequential start events of the subprocesses
 self.register_subprocesses()

 # Re-add the activities to the simpy environment
 register_processes(self.sub_processes)

 activity_log.log_entry(
 t=env.now,
 activity_id=activity_log.id,
 activity_state=core.LogState.STOP,
)

 args_data["start_preprocessing"] = start_time
 args_data["start_activity"] = start_while
 yield from self.post_process(**args_data)

[docs]class WhileActivity(GenericActivity, ConditionProcessMixin, RegisterSubProcesses):
 """
 WhileActivity Class forms a specific class for executing multiple activities in a dedicated order within a simulation.

 The while activity is a structural activity, which does not require specific resources.

 sub_processes
 the sub_processes which is executed in sequence in every iteration
 condition_event
 a condition event provided in the expression language which will stop the iteration as soon as the event is fulfilled.
 start_event
 the activity will start as soon as this event is triggered
 by default will be to start immediately
 """

 # activity_log, env, stop_event, sub_processes, requested_resources, keep_resources
 def __init__(self, sub_processes, condition_event, show=False, *args, **kwargs):
 super().__init__(*args, **kwargs)
 """Initialization"""
 self.print = show
 self.sub_processes = sub_processes

 self.condition_event = condition_event
 self.max_iterations = 1_000_000

 self.register_subprocesses = self.register_sequential_subprocesses
 self.register_subprocesses()

[docs]class RepeatActivity(GenericActivity, ConditionProcessMixin, RegisterSubProcesses):
 """
 RepeatActivity Class forms a specific class for executing multiple activities in a dedicated order within a simulation.

 Parameters

 sub_processes
 the sub_processes which is executed in sequence in every iteration
 repetitions
 Number of times the subprocess is repeated
 start_event
 the activity will start as soon as this event is triggered
 by default will be to start immediately
 """

 def __init__(self, sub_processes, repetitions: int, show=False, *args, **kwargs):
 super().__init__(*args, **kwargs)
 """Initialization"""

 self.print = show
 self.sub_processes = sub_processes
 self.max_iterations = repetitions
 self.condition_event = [
 {"type": "activity", "state": "done", "name": self.name}
]

 self.register_subprocesses = self.register_sequential_subprocesses
 self.register_subprocesses()

 nav.xhtml

 Table of Contents

 		
 Open source Complex Logistics Simulation

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Import required components

 		
 Using Mixins and Metaclasses

 		
 Examples

 		
 Start-Up

 		
 Required Libraries

 		
 Simulation Environment

 		
 Locations

 		
 Basic Location

 		
 Storage Location

 		
 Processing Storage Location

 		
 Resources

 		
 Processing Resource

 		
 Transporting Resource

 		
 Transporting Processing Resource

 		
 Simulations

 		
 SimPy processes

 		
 Unconditional Activities

 		
 Conditional Activities

 		
 OpenCLSim

 		
 Submodules

 		
 openclsim.model module

 		
 openclsim.core module

 		
 openclsim.server module

 		
 Module contents

 		
 OpenCLSim API

 		
 Starting the Flask Server

 		
 Using the Flask Server

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 1.4.2 (2021-02-02)

 		
 1.2.3 (2020-05-07)

 		
 1.2.2 (2020-04-10)

 		
 1.2.1 (2020-03-27)

 		
 1.2.0 (2020-01-27)

 		
 1.1.1 (2019-12-11)

 		
 1.1.0 (2019-08-30)

 		
 1.0.1 (2019-07-26)

 		
 1.0.0 (2019-07-10)

 		
 0.3.0 (2019-06-20)

 		
 v0.2.0 (2019-02-14)

 		
 v0.1.0 (2018-08-01)

 		
 Version conventions

_static/comment-bright.png

_static/OpenCLSim.png
UpenCLSim

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

